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Many of the acetogenins isolated from the Annonaceae plants1

have shown remarkable cytotoxic, antitumor, antimalarial,
immunosuppressive, pesticidal, and antifeedant activities.2

Classification of these fatty acid derivatives into three subgroups
is based on the number and relative positioning of the tetrahy-
drofuran moieties within the molecule: the mono-THF, the
adjacent bis-THF, and the nonadjacent bis-THF acetogenins.1

We have recently shown that many acetogenins of the first and
second subgroups, including solamin, reticulatacin, asimicin,
bullatacin, trilobacin, and trilobin, can be efficiently synthesized3

either by a convergent approach or via the “naked” carbon
skeleton strategy,4,5 combining the Sharpless asymmetric dihy-
droxylation (AD) reaction6 with the Kennedy oxidative cycliza-
tion reaction.7

Goniocin, which has been recently isolated fromGoniothala-
mus giganteus,8 possesses three adjacent THF rings and,
therefore, represents the first example of a new subclass of
Annonaceous acetogenins. Structure1 was proposed for
goniocin on the basis of its MS and1H and 13C NMR data.8

Clearly, construction of the tris-trans-THF fragmentI with the
appropriate configuration of the seven stereogenic carbinol
centers represents the main challenge in the synthesis of1. Our
retrosynthetic analysis (Scheme 1) was based on previous
findings that two consecutive oxidative cyclizations with 4,8-
dienols can be carried out in a single step to produce bis-THF
derivatives.9 We reasoned thatI could be synthesized from a
4,8,12-trienol substrate using the tandem oxidative cyclization
methodology. Coupling ofI with the butenolide fragmentII
could lead to an efficient total synthesis of1.
Here, we report that alltrans-4,8,12-trienol substrates indeed

undergo a highly stereospecific triple oxidative cyclization
reaction in the presence of a rhenium(VII) reagent to produce
a single stereoisomer of a tris-THF product. Surprisingly,
however, the product’s stereochemistry is nottrans-threo-trans-
threo-trans-threo as expected, buttrans-threo-cis-threo-cis-

threo. Consequently, we have synthesized 17,18-bisepi-
goniocin (2) rather than1.
The key intermediate in our synthesis (Scheme 2) is the

“naked” carbon skeleton (6) which is easily prepared from (E,E)-
ethyl heneicosa-4,8-dienoate3a (see the Supporting Information).
Asymmetric epoxidation10 of 3 using Ti(OPr)4 and (-)-DIPT
produces epoxy alcohol4 in more than 95% ee. Reductive
cleavage of the epoxide ring using Red-Al affords the 1,3-diol
5,11 which is then monoprotected at the primary position to give
the silyl ether6.
We planned to use the single stereogenic center in6 as the

only source of chirality at the tris-THF fragment and achieve
the other six stereogenic carbinol centers by a tandem oxidative
cyclization reaction using a Re(VII) reagent. We found that
both reagents originally used by Kennedy, i.e. Re2O7/lutidine
and Re2O7/H5IO6 in dichloromethane, are useful for monocy-
clization with simple substrates possessing one double bond.
However, for double cyclization with substrates containing two
double bonds, the more reactive mixture, Re2O7/H5IO6, was
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Scheme 1

Scheme 2. Total Synthesis of2, First Approacha

a (a) Ti(OiPr)4, (-)-DIPT, TBHP, powdered Molecular Sieves 4A,
-20 °C, 6 h. (b) Red-Al, THF, 0°C, 4 h. (c) TBDPSCl, diisopropyl-
ethylamine, CH2Cl2, room temperature (rt) 16 h. (d) Re2O7, TFAA,
THF, rt, 1 h, concentration under vacuum and washing with cold
pentane, then alcohol6, TFAA, CH2Cl2, 0 °C to rt, 6 h. (e) i. MOMCl,
diisopropylethylamine, CH2Cl2, 0 °C to rt, 16 h; ii. TBAF, THF, 0°C
to rt, 2 h; iii. I2, PPh3, 0 °C to rt, 2 h; iv. PPh3, NaHCO3, CH3CN, 45
°C, 48 h. (f) BuLi, THF, 0°C, then aldehydeII . (g) i. H2, Wilkinson’s
catalyst (20%, w/w), C6H6-EtOH (4:1), rt, 4 h; ii. 4% AcCl in MeOH/
CH2Cl2 (1:1, v/v), rt, 16 h.
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found to be more useful in terms of both reaction rate and yield.9

Yet, for triple cyclization, although this reagent does produce a
tris-THF product, the reaction conditions are too acidic to be
compatible with the silyl protecting group. Therefore, we
examined various alternative perrhenate reagents, including the
Wilkinson’s mononuclear perrhenate complex12 (trifluoro-
acetyl)perrhenate (CF3CO2ReO3), which has been recently used
by McDonald.13 We found that a mixture of CF3CO2ReO3 and
trifluoroacetic anhydride in dichloromethane is a better reagent
for oxidative polycyclizations. Thus, when trienol6was treated
with a mixture of CF3CO2ReO3 and trifluoroacetic anhydride,
a stereochemically pure tris-THF product was isolated in 48%
yield.14,15 Surprisingly,1H and13C NMR data of this product
did not match the expected characteristics of thetrans-threo-
trans-threo-trans-threostereoisomer1. We assigned the ster-
eochemistry of7 astrans-threo-cis-threo-cis-threoon the basis
of 2D-NMR experiments (1H-1H COSY, TOCSY, and ROE-
SY)16 as well as by independent synthesis.17

The tris-THF derivative7was converted to the phosphonium
salt 8 in a four-step sequence: we protected the secondary
alcohol in the form of a MOM ether, deprotected the primary
alcohol by desilylation, converted it to the corresponding iodide,
and then substituted with triphenylphosphine to produce8.
Wittig reaction of the latter with aldehydeII (for the synthesis
of II , see the Supporting Information) afforded alkene9.
Finally, hydrogenation and removal of the protecting groups
afforded2.
In the above-described synthesis of2, we placed the triple-

cyclization step at an early stage of the synthetic scheme, before
the attachment of the butenolide fragment. Alternatively, since
the tandem oxidative cyclization reaction is compatible with
many functional groups, it could be carried out in a much later
stage, after the completion of the molecular carbon skeleton.
To check this possibility, we converted trienol6 to the
phosphonium salt10 and then coupled it with aldehydeII
(Scheme 3). The resultant tetraenol (11) represents an interest-

ing substrate for the tandem oxidative cyclization reaction
because it is far more complex than substrate6 in terms of both
molecular size and number of functional groups that could
potentially bind the rhenium metal. Moreover, substrate11
provides an interesting opportunity to examine the relative
reactivity of the rhenium reagent toward homoallylic and bis-
homoallylic alcohols. In principle, as the secondary carbinol
center in11 is both homoallylic and bis-homoallylic, competition
between the two oxidative cyclization alternatives might have
occurred. Nevertheless, cyclization with trifluoroacetyl per-
rhenate and trifluoroacetic anhydride took place exclusively at
the bis-homoallylic site, producing the tris-THF intermediate
12 in 50% yield. This is a remarkable observation, considering
the fact that six new stereogenic centers are formed in a single
transformation with very high diastereoselectivity, producing a
compound that is only two steps away from the final target
molecule. Indeed, hydrogenation and deprotection of12
afforded2.
In conclusion, we have shown that the use of trifluoroacetyl

perrhenate for oxidative polycyclization is a general reaction,
compatible with complex molecular structures and a variety of
functional groups, including a homoallylic alcohol, a silyl ether,
and anR,â-unsaturatedγ-lactone. The very high regio- and
diastereoselectivity of this reaction make it a powerful tool for
synthesis of polyoxygenated carbon skeletons and for the
Annonaceous acetogenins in particular. Thus, the asymmetric
total synthesis of2 has been achieved via two alternative routes
(in 11 steps with 4.97% yield or in 12 steps with 8.07% yield),
starting from the achiral hydrocarbon3. All asymmetric centers
in the main fragment have been introduced in two synthetic
steps: asymmetric epoxidation and tandem oxidative cyclization
reaction.
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Scheme 3. Total Synthesis of2, Second Approacha

a (a) i. MOMCl, diisopropylethylamine, CH2Cl2, 0 °C to rt, 16 h; ii.
TBAF, THF, 0 °C to rt, 2 h; iii. I2, PPh3, 0 °C to rt, 2 h; iv. PPh3,
NaHCO3, CH3CN, 45°C, 48 h. (b) i. BuLi, THF, 0°C, then aldehyde
II , 0.5 h; ii. TMSBr, CH2Cl2, -30 °C, 1 h. (c) Re2O7, TFAA, THF, rt,
1 h, concentration under vacuum and washing with cold pentane, then
alcohol11, CH2Cl2, TFAA, 0 °C to rt, 3 h. (d) i. H2, Wilkinson’s catalyst
(20%, w/w), C6H6-EtOH (4:1), rt, 4 h; ii. 4% AcCl in MeOH, CH2Cl2
(1:1, v/v), rt, 16 h.
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